Ahmad M. Farag ${ }^{\text {a }}$, Yehya M. Elkholy ${ }^{\text {b }}$ and Korany A. Ali ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt ${ }^{\mathrm{b}}$ Department of Chemistry, Faculty of Science, Helwan University, Ain-Helwan, Cairo,Egypt
Email: afarag49@yahoo.com
Received December 27, 2006

Several 1,2-diazaspiro[4,4]nona-2,8-diene-6-one derivatives were synthesised via cycloaddition of nitrilimides to 3 -aryliden- $2(3 \mathrm{H})$-furanone derivatives. The formed products react with hydrazine hydrate to give the corresponding pyrazolecarbohydrazide derivatives which undergo intramolecure cyclization upon treatment with $\mathrm{HCl} / \mathrm{AcOH}$ mixture to affored 1,2,7,8-tetrazaspiro[4.5]deca-2,9-diene-6-one derivatives. Molecular mechanics energy minimization techniques and related structural parameters for compound 8-(4-methylphenyl)-1,3,4-triphenyl-7-oxa-1,2-diazaspiro[4.4]nona-2,8-diene-6-one 5a are reported.
J. Heterocyclic Chem., 45, 279 (2008).

INTRODUCTION

The considerable pharmacological importance of furan-2-one derivatives have attracted a great deal of attention [1-6]. The various changes in the structure of these compounds are worth studying in order to synthesize less toxic and more potent drugs. Thus, attachment of other heterocyclic moieties, which are known to possess pharmacological activity, to furan ring may lead to the fulfillment of this objective. On the other hand, pyrazole derivative are known to have significant biological and pharmacological activity [7-9]. As an extension of our research program aiming at the synthesis of a variety of heterocyclic systems for biological screening [10-20], we report here on the syntheses of some important diazo-spiro[4.4]nona- and tetrazaspiro[4.5]deca-2,9-diene-6-one derivatives.

RESULTS AND DISCUSSION

In the course of our investigation, we have found that 3-phenylmethylene-5-arylfuran-2(3H)-ones 3, are excellent building blocks for the synthesis of a variety spiropyrazole ring systems [21-23]. Thus, treatment of 3-phenyl-methylene-5-arylfuran-2(3H)-ones $\mathbf{3}$ with nitrileimides 2a-i) generated in situ by the action of triethylamine on hydrazonoyl chlorides 1a-i [24-26]), in benzene under reflux, afforded the corresponding cycloadducts 5a-i in good yields (Scheme 1). The reactions of 2 with 4 are regioselective and, in each case, only one regioisomer of $\mathbf{5}$
was isolated. This regioselectivity was evidenced from TLC and ${ }^{1} \mathrm{H} \mathrm{nmr}$ analysis of the crude reaction product.

Scheme 1

The ${ }^{1} \mathrm{H}$ nmr spectrum of compound 5a, taken as a typical example of the prepared series, displayed a singlet signal at $\delta 2.15$ due to methyl protons and showed two singlet signals in the region at $\delta 5.01$ and 5.23 assigned to the CH protons of the pyrazole and furanone ring residues, respectively, in addition to a multiplet at δ 7.15-7.35 corresponding to the aromatic protons. Data produced using MM2 method via energy minimization techniques followed by molecular dynamics run for 20000 fs at room temperature, in the form of Cartesian coordinations for all representative atoms including H -atom (all atoms force field) are normaly representive of x, y, z, coordinates obtained from single crystal diffractions method [27-29].

Figure 1. Molecular structure of 5a
Treatment of the 7-oxa-1,2-diazaspiro[4.4]nona-2,8-diene-6-one derivatives 5a-f with hydrazine hydrate, in ethanol at room temperature afforded the corresponding 1-aryl-4-phenyl-5-(2-Phenyl-2-oxoethyl)-pyrazole-5-carbohydrazide derivatives $\mathbf{6 a , b}$ and ethyl 5-(hydrazino-carbonyl)-5-(2-phenyl-2-oxoethyl)-1,4-diphenyl-4,5-dihydro-1H-pyrazole-3-carboxylate derivatives $\mathbf{6 c - f}$, respectively (Scheme 2).

The structures of the isolated products were assigned on the basis of their elemental analyses and spectral data. For example, the ir spectra of compounds $\mathbf{6 a , b}$ showed, in each case, two strong carbonyl absorption bands in the region $1710-1680 \mathrm{~cm}^{-1}$ and showed three bands in the region $3300-3430 \mathrm{~cm}^{-1}$ corresponding to NH and NH_{2} groups. The ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum of compound $\mathbf{6 b}$, taken as a typical example of the prepared series, revealed two singlet signals at $\delta 2.15$ and $\delta 4.16$ corresponding to methyl and methylene protons, respectively, and two broad bands ($\mathrm{D}_{2} \mathrm{O}$-exchangeable) at $\delta 8.78$ and 3.87 due to NH and NH_{2} protons, respectively, in addition to multiplet signals in the region $\delta 7.25-7.50$ due to aromatic protons. Moreover, the mass spectrum of compound $\mathbf{6 a}$ revealed a peak at $m / z 474$ corresponding to its molecular ion.

Scheme 2

Treatment of 5-(2-phenyl-2-oxoethyl)-1,3,4-triphenyl-4,5-dihydro- 1 H -pyrazole-5-carbohydrazide $\mathbf{6 a}$ with a mixture of hydrochloric acid and glacial acetic acid at reflux temperature, afforded a single product (TLC) identified as 1,3,4,9-tetraphenyl-1,2,7,8-tetraza-spiro[4.5]-deca-2,9-diene-6-one 10 (Scheme 3). The IR spectrum of the isolated product 10 showed a band at $3417 \mathrm{~cm}^{-1}$ due to NH group and a strong absorption band at $1744 \mathrm{~cm}^{-1}$ due to carbonyl group. These results indicate that the reaction of $\mathbf{6 a}$ with hydrochloric acid and glacial acetic acid proceeds, via the elimination of water molecule from the non-isolable intermediate 9 .

Scheme 3

6a

10

8

9

EXPERIMENTAL

All melting points were measured on a Gallenkamp melting point apparatus and are uncorrected. The infrared spectra were recorded in potassium bromide disks on a Pye Unicam SP 3300 and Shimadzu FT ir 8101 PC infrared spectrophotometers. The nmr spectra were recorded on a Varian Mercury VX-300 nmr spectrometer. ${ }^{1} \mathrm{H}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C} \mathrm{nmr}(75.46 \mathrm{MHz})$ were run in deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ or dimethylsulphoxide (DMSO- d_{6}). Chemical shifts were related to that of the solvent. Mass spectra were recorded on a Shimadzu GCMS-QP 1000 EX mass spectrometer at $70 \mathrm{e} . \mathrm{V}$. Elemental analyses were carried out at the Microanalytical Center of Cairo University, Giza, Egypt.

8-Aryl-1,3,4-triphenyl-7-oxa-1,2-diazaspiro[4.4]nona-2,8-diene-6-one derivatives 5a,b. General procedure. To a solution of the appropriate arylidenefuranone derivative $\mathbf{3}$)10 mmol) and N-phenylbenzohydrazonyl chloride $\mathbf{1 a , b}(10 \mathrm{mmol})$, in dry benzene (30 mL), was added triethylamine (10 mmol) and the mixture was refluxed for 4 h then allowed to cool. The solid that formed was collected by filtration, washed with methanol and crystallization from ethanol.

8-(4-Methylphenyl)-1,3,4-triphenyl-7-oxa-1,2-diazaspiro-[4.4]nona-2,8-diene-6-one (5a). Yield 73\%; mp 183-184 ${ }^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) \mathrm{v} /_{\text {max }} \mathrm{cm}^{-1} 1801\left(\mathrm{C}=\mathrm{O}\right.$ of lactone). ${ }^{1} \mathrm{H} \mathrm{nmr}(\delta, \mathrm{ppm}$, CDCl_{3}): $2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$-pyrazole), 5.23 (s, $1 \mathrm{H}, \mathrm{CH}$-furanone), 7.15-7.35 (m, 19H, ArHs). Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}_{2}$ (456.54): C, 81.55; H, 5.30; N, 6.14 Found: C, 81.70; H, 5.10; N, 6.00\%.

8-(4-Methoxyphenyl)-1,3,4-triphenyl-7-oxa-1,2-diazaspiro-[4.4]nona-2,8-diene-6-one (5b). Yield 75%; mp $220-222{ }^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) ~ \mathrm{v} /_{\text {max }} \mathrm{cm}^{-1} 1805\left(\mathrm{C}=\mathrm{O}\right.$ of lactone). ${ }^{1} \mathrm{H} \mathrm{nmr}$ (δ, ppm, CDCl_{3}): $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{pyrazole}), 6.99(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}$ furanone), 7.13-7.35 (m, 19H, ArHs). $\left.{ }^{13} \mathrm{C} \mathrm{nmr}\right) \delta$, ppm, CDCl_{3}): $55.41,97.69,114.4,120.73,125.66,127.04,129.0$, $129.8,129.90,133.8,135.39 .156 .97,161.50$. MS $(m / z): 472$ $\left(\mathrm{M}^{+}\right), 444,194,135,91,77$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}_{2}$ (472.54): C, 78.80 ; H, 5.12 ; N, 5.93%. Found: C, 79.00 ; H, $5.30, \mathrm{~N}, 6.10 \%$.

Ethyl 6-oxo-1,8-Diaryl-4-phenyl-7-oxa-1,2-diazaspiro[4.4]-nona-2,8-diene-3-carboxylate ($5 \mathrm{c}-\mathrm{h}$). General procedure. To a solution of the appropriate arylidenefuranone derivative 3 (5 mmol), and the corresponding hydrazonyl chloride $\mathbf{1 c - e}$ (5 mmol), in dry benzene (20 mL) was added triethylamine (0.8 $\mathrm{mL}, 6 \mathrm{mmol}$) and the mixture was refluxed for 6 h , then allowed to cool. The solvent was removed under reduced pressure and solid that formed was collected by filtration, washed with methanol and finally recrystallized from ethanol.

Ethyl 6-oxo-1,4,8-triphenyl-7-oxa-1,2-diazaspiro[4.4]nona-2,8-diene-3-carboxylate (5c). Yield 83%; mp $105-106{ }^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) \mathrm{v} /_{\max } \mathrm{cm}^{-1} 1809$ ($\mathrm{C}=\mathrm{O}$ of lactone), 1724 ($\mathrm{C}=\mathrm{O}$ of ester).$^{.} \mathrm{H}$ nmr ($\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}$): $1.21\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.23\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.96$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$-pyrazole), 5.32 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$-furanone), 7.15-7.48 (m, 15 H, ArH's). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$ (438.48): C, 73.96 ; H , 5.05 ; N, 6.39%. Found: C, $73.70 ;$ H, 5.20 ; N, 6.20%.

Ethyl 6-oxo-4,8-diphenyl-1-(4-methylphenyl)-7-oxa-1,2-diazaspiro[4.4]nona-2,8-diene-3-carboxylate (5d). Yield 70%; mp 115-116 ${ }^{\circ} \mathrm{C}$; ir (KBr) $\mathrm{v}_{\text {max }} \mathrm{cm}^{-1} 1805$ (C=O of lactone), $1712\left(\mathrm{C}=\mathrm{O}\right.$ of ester). ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 1.20(\mathrm{t}, 3 \mathrm{H}$, ester$\left.\mathrm{CH}_{3}\right), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.21\left(\mathrm{q}, 2 \mathrm{H}\right.$, ester- $\left.\mathrm{CH}_{2}\right), 4.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-$ pyrazole), $5.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$-furanone), 7.16-7.39 (m, 14H,

ArH's); MS (m/z): $452\left(\mathrm{M}^{+}\right), 379,360,105,77$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ (452.507): C, $74.32 ; \mathrm{H}, 5.34 ; \mathrm{N}, 6.19 \%$. Found: C, 74.20 ; H, 5.50; N, 6.00%.

Ethyl 6-oxo-1-(4-chlorophenyl-4,8-diphenyl-7-oxa-1,2-diazaspiro[4.4]nona-2,8-diene-3-carboxylate (5e). Yield 70\%; $\mathrm{mp} 123{ }^{\circ} \mathrm{C}$; ir (KBr) $v / /_{\text {max }} \mathrm{cm}^{-1} 1807$ (C=O of lactone), 1714 $\left(\mathrm{C}=\mathrm{O}\right.$ of ester). ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 1.21\left(\mathrm{t}, 3 \mathrm{H}\right.$, ester- $\left.\mathrm{CH}_{3}\right)$, 4.22 (q, 2 H , ester- CH_{2}), 4.93 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$-pyrazole), $5.30(\mathrm{~s}, 1 \mathrm{H}$, CH-furanone), 7.15-7.41 (m, 14H, ArH's). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cl}$ (472.925): C, 68.57; H, 4.47; N, 5.92; Cl, 7.50%. Found: C, $68.70 ; \mathrm{H}, 4.30 ; \mathrm{N}, 6.10 ; \mathrm{Cl}, 7.40 \%$.

Ethyl 6-oxo-1,4-diphenyl-8-(4-methylphenyl)-7-oxa-1,2-diazaspiro[4.4]nona-2,8-diene-3-carboxylate (5f). Yield 80%; $\mathrm{mp} 110{ }^{\circ} \mathrm{C}$; ir (KBr) $\mathrm{v} /_{\text {max }} \mathrm{cm}^{-1} 1813$ ($\mathrm{C}=\mathrm{O}$ of lactone), 1728 ($\mathrm{C}=\mathrm{O}$ of ester). ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}\right) 1.23\left(\mathrm{t}, 3 \mathrm{H}\right.$, ester- $\left.\mathrm{CH}_{3}\right)$, 2.37 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 4.24 (q, 2H, ester- CH_{2}), 4.95 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}-$ pyrazole), 5.27 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$ furanone), 7.16-7.34 (m, 14H, ArHs). $\left.\left.{ }^{13} \mathrm{C} \mathrm{nmr}\right) \delta, \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 14.06,21.45,61.29,61.47,99.68$, 117.72, 123.91, 124.29, 125.34, 128.22, 128.37, 129.05, 129.16, 129.46, 129.59, 129.99, 134.66, 141.37, 141.96, 142.10, 154.61, 161.07,174.25. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ (452.507): C, 74.32; H, 5.34; N, 6.19%. Found: C, 74.10 ; H, 5.50 ; N, 6.30%.
Ethyl 6-oxo-1,8-di(4-methylphenyl)-4-phenyl-7-oxa-1,2-diazaspiro[4.4]nona-2,8-diene-3-carboxylate (5g). Yield 75%; mp $115{ }^{\circ} \mathrm{C}$; ir (KBr) $v /_{\text {max }} \mathrm{cm}^{-1} 1805(\mathrm{C}=\mathrm{O}$ of lactone), $1728\left(\mathrm{C}=\mathrm{O}\right.$ of ester). ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 1.20(\mathrm{t}, 3 \mathrm{H}$, ester$\mathrm{CH}_{3}$), $2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.2(\mathrm{q}, 2 \mathrm{H}$, ester$\mathrm{CH}_{2}$), $4.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ pyrazole), $5.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ furanone), 7.11-7.33 (m, 13 H , ArHs). $\left.{ }^{13} \mathrm{C} \mathrm{nmr}\right) \delta$, ppm, CDCl_{3}): 14.03, $21.46,61.40,78.81,99.01,99.24,119.01,124.08$, 125.31, 125.36, 128.19, 128.47, 129.11, 129.18, 129.22, 129.52, 129.59, 129.98, 130.04, 134.38,134.66, 140.67, 141.59, 154.88,154.91, 160.85, 173.94. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$ (466.539): C, 74.66 ; H, 5.61 ; N, $.6 .00 \%$. Found: C, 74.40 ; H, 5.70 ; N, 6.20%.

Ethyl 6-oxo-1-(4-chlorophenyl)-8-(4-methylphenyl)-4-phenyl-7-oxa-1,2-diazaspiro[4.4]nona-2,8-diene-3-carboxylate (5h). Yield 78%; $\mathrm{mp} 113{ }^{\circ} \mathrm{C}$; ir (KBr) $\mathrm{V} /{ }_{\text {max }} \mathrm{cm}^{-1} 1805$ ($\mathrm{C}=\mathrm{O}$ of lactone), 1732 ($\mathrm{C}=\mathrm{O}$ of ester). ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}\right.$): $1.22\left(\mathrm{t}, 3 \mathrm{H}\right.$, ester- $\left.\mathrm{CH}_{3}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.23(\mathrm{q}, 2 \mathrm{H}$, ester$\mathrm{CH}_{2}$), $4.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ - pyrazole), 5.25 (s, $1 \mathrm{H}, \mathrm{CH}$-furanone), 7.17-7.34 (m, 13H, ArHs). ${ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{(} \delta, \mathrm{ppm}, \mathrm{CDCl}_{3}$): 14.03, $21.46,61.42,61.48,99.00,99.24,119.01,124.08,125.31$, 125.36, 128.19, 128.47, 129.03, 129.11, 129.18, 129.22, 129.52, $129.59,129.98,130.04,134.38,134.66,140.67,141.59,142.88$, 154.91, 160.85, 173.94. MS (m/z): $488(\mathrm{M}+2), 486\left(\mathrm{M}^{+}\right), 458$, 262, 119, 91, 77. Anal Calcd.for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cl}$ (486.95): C, 69.06; H, 4.76; N, 5.75; Cl, 7.28\%. Found: C, 69.13; H, 4.85; N, $5.82 ; \mathrm{Cl}, 7.52 \%$.
6-Oxo-N,1,4,8-tetraphenyl-7-oxa-1,2-diazaspiro[4.4]nona-2,8-diene-3-carboxamide (5i). To a solution of the benzylidenefuranone 3a (3 mmol) and the hydrazonyl chloride $\mathbf{1 i}$ (3 mmol) in dry benzene (20 mL) was added triethylamine (3 mmol) and the mixture was refluxed for 4 h . The solvent was removed under reduced pressure and the solid that formed was collected washed with methanol and recrystallization from ethanol. Yield 78%; mp $180^{\circ} \mathrm{C}$; ir (KBr) $v /_{\text {max }} \mathrm{cm}^{-1} 3394(\mathrm{NH}), 1850(\mathrm{C}=\mathrm{O}$ of lactone), 1681 carbonyl of (CO-NHPh). MS (m / z) $485\left(\mathrm{M}^{+}\right)$, $457,363,335,259,231,105,77 .{ }^{1} \mathrm{H} \mathrm{nmr}\left(\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 5.05$ (s, 1H, CH-pyrazole), 5.33 (s, 1H, CH furanone), 7.25-7.45 (m, $20 \mathrm{H}, \mathrm{ArHs}), 8.5$ (s, $1 \mathrm{H}, \mathrm{NH}$). Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$ (485.540). C, $76.68 ; \mathrm{H}, 4.77$; N, 8.65%. Found: C, 76.9 ; H, 4.50; N, 8.30%.

Synthesis of 5-(2-Phenyl-2-oxoethyl)-1,3,4-triphenyl-4,5-dihydro-1H-pyrazole 5-carbohydrazide and Ethyl 5-(hydra-zinocarbonyl)-5-[2-phenyl-2-oxoethyl]-1,4-diphenyl-4,5-dihydro-1H-pyrazole-3-carboxylate derivatives 6a,b and 6cf. General Procedure. Hydrazine hydrate ($80 \%, 2 \mathrm{~mL}$) was added to a stirred solution of the appropriate spiropyrazolofuranone derivatives 5a-f (0.5 gm) in absolute ethanol (20 mL) and the reaction mixture was stirred for 4 hours. The color of spiropyrazolofuranone derivative disappears and white precipitate was formed. The precipitated solid was collected by filtration, washed with ethanol and crystalized from absolute ethanol.
5-(2-Phenyl-2-oxoethyl)-1,3,4-triphenyl-4,5-dihydro-1 H -pyrazole-5-carbohydrazide (6a). Yield 80%; mp $175{ }^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) \mathrm{v} /_{\text {max }} \mathrm{cm}^{-1} 3300-3430\left(\mathrm{NH}, \mathrm{NH}_{2}\right), 1710,1680(2 \mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ $\mathrm{nmr}\left(\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 8.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.75\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.15$ (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 4.83 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$ pyrazole), $7.25-7.51(\mathrm{~m}, 20 \mathrm{H}$, ArHs). MS (m / z): $474\left(\mathrm{M}^{+}\right), 456,415,336,309,194,130,91$, 77, 51. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2}$ (474.559): C, 75.92; H, 5.47 ; N, 11.80\%. Found: C, 76.30; H, 5.70; N, 11.90%.

5-[2-(4-Methylphenyl)-2-oxoethyl]-1,3,4-triphenyl-4,5-dihydro-1H-pyrazole-5-carbohydrazide (6b). Yield 82%; $\mathrm{mp} .130{ }^{\circ} \mathrm{C}$; ir (KBr) $\mathrm{v} /_{\text {max }} \mathrm{cm}^{-1} 3300-3430\left(\mathrm{NH}, \mathrm{NH}_{2}\right), 1710$ $(\mathrm{C}=\mathrm{O}), 1680(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H} \mathrm{nmr}\left(\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 8.78 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 3.78 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}$), 4.16 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 4.84 (s , $1 \mathrm{H}, \mathrm{CH}$ pyrazole), 7.25-7.50 (m, 19H, ArHs). Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}$ (488.58): C, $76.20 ; \mathrm{H}, 5.77$; N, 11.46%. Found: C, 76.60 ; H, 6.00; N, 11.60\%.

Ethyl 5-(hydrazinocarbonyl)-5-[2-phenyl-2-oxoethyl]-1,4-diphenyl-4,5-dihydro-1H-pyrazole-3-carboxylate (6c). Yield 70%; mp $128{ }^{\circ} \mathrm{C}$; ir (KBr) $\mathrm{v}_{\text {max }} \mathrm{cm}^{-1} 3394,3317\left(\mathrm{NH}, \mathrm{NH}_{2}\right)$, 1712, $1689(2 \mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 1.13$ (s, 3 H , ester- CH_{3}), 2.67 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.74 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 3.64 ($\mathrm{s}, 1 \mathrm{H}$, CH-pyrazole), 3.87 (s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 4.12 (q, 2 H , ester- CH_{2}), $7.25-$ 7.41 (m, 15H, ArHs). MS (m/z): $470\left(\mathrm{M}^{+}\right), 452,411,390,365$, 233, 130, 105, 77, 51. ${ }^{13} \mathrm{C} \mathrm{nmr}\left(\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 13.91,39.79$, 58.10, 60.59, 75.26, 89.27, 119.72, 122.09, 124.09, 125.10, $127.87,128.25,128.37,128.59,128.84,128.90,129.17,129.30$, $129.65,131.86,134.49,140.95,141.92,141.97,161.66,170.63$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}$ (470.52): C, 68.92; H, 5.57; N, 11.90%. Found: C, $69.10 ; \mathrm{H}, 6.01 \mathrm{~N}, 12.00 \%$.

Ethyl 5-(hydrazinocarbonyl)-5-[2-phenyl)-2-oxoethyl]-1(4-methylphenyl)-4-phenyl-1 H -pyrazole-3-carboxylate (6d). Yield 75\%; mp $160{ }^{\circ} \mathrm{C}$; ir (KBr) $\mathrm{v} /_{\text {max }} \mathrm{cm}^{-1} 3355,3300(\mathrm{NH}$, NH_{2}), 1712, $1687(2 \mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H} \mathrm{nmr}\left(\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 1.15(\mathrm{t}, 3 \mathrm{H}$, ester- CH_{3}), 2.74 ($\mathrm{s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH}$), 2.54 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 3.87 ($\mathrm{s}, 2 \mathrm{H}$, NH_{2}), 4.16 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), $4.18\left(\mathrm{q}, 2 \mathrm{H}\right.$, ester- CH_{2}), 4.94 (s, br, 1 H , CH-pyrazole), 7.17-7.29 (m, 14H, ArHs). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4}$ (484.55).: $\mathrm{C}, 69.40 ; \mathrm{H}, 5.82 ; \mathrm{N}, 11.56 \%$. Found: C, $69.80 ; \mathrm{H}, 6.10 ; \mathrm{N}, 11.80 \%$.

Ethyl 5-(hydrazinocarbonyl)-5-[2-(4-methylphenyl)-2-oxo-ethyl]-1,4-diphenyl-1 H -pyrazole-3-carboxylate (6 e). Yield 83%; mp $198^{\circ} \mathrm{C}$; ir (KBr) $v /_{\text {max }} \mathrm{cm}^{-1} 3327,3276\left(\mathrm{NH}, \mathrm{NH}_{2}\right)$, $1718,1697(2 \mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H} \operatorname{nmr}\left(\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 1.14(\mathrm{t}, 3 \mathrm{H}$, ester$\mathrm{CH}_{3}$), $2.32(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, 4.13 (s, 2H, CH 2), 4.18 (q, 2H, ester- CH_{2}), 4.80 (s, br., $1 \mathrm{H}, \mathrm{CH}-$ pyrazole), 7.17-7.38 (m, 14H, ArHs). ${ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{(} \delta, \mathrm{ppm}, \mathrm{CDCl}_{3}$): 13.94, 20.92, 39.89, 59.47, 60.94, 89.12, 120.10, 124.31, 124.98, $127.90,128.62,129.11,129.21,129.28,134.52,138.28,13880$, 141.06, 142.00, 161.63, 170.46. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4}$ (484.55): C, 69.40; H, 5.82 ; N, 11.56%. Found: C, $69.70 ;$ H, 5.60; N, 11.70\%.

Ethyl 5-(hydrazinocarbonyl)-5-[2-(4-methylphenyl)-2-oxo-ethyl]-1-(4-methylphenyl)-1-phenyl-1,4-dihydropyrazole-3carboxylate (6f). Yield 85%; $\mathrm{mp} 120{ }^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) \mathrm{v} /_{\text {max }} \mathrm{cm}^{-1}$ $3494,3352\left(\mathrm{NH}, \mathrm{NH}_{2}\right), 1705,1689(2 \mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H} \mathrm{nmr}(\delta, \mathrm{ppm}$, CDCl_{3}): $1.15\left(\mathrm{t}, 3 \mathrm{H}\right.$, ester- CH_{3}), $2.29\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.74(\mathrm{~s}, 1 \mathrm{H}$, NH), 3.87 (s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $4.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.18$ (q, 2H, esterCH_{2}), $4.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ pyrazole), 6.9-7.82 ($\mathrm{m}, 13 \mathrm{H}, \mathrm{ArHs}$). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}$ (498.62): C, 69.86; H, 6.01; N , 11.23%. Found: C, $70.10 ; \mathrm{H}, 6.21 ; \mathrm{N}, 11.40 \%$.

Cyclization of 5-(2-Phenyl-2-oxoethyl)-1,3,4-triphenyl-4,5-dihydro-1H-pyrazole-5-carbohydrazide. Synthesis of 1,3,4,9-tetraphenyl-1,2,7,8-tetrazaspiro[4.5]deca-2,9-diene-6-one (10). A mixture of glacial acetic acid (5 mL), hydrochloric acid (34%, 10 mL) and pyrazole-5-carbohydrazide 6a (20 mmol) was refluxed for 5 hour. The reaction mixture was allowed to cool and poured into ice-cold water. The precipitated solid was collected by filtration, washed with water and crystallized from ethanol. Yield 50%; mp $158^{\circ} \mathrm{C}$; ir (KBr) $\mathrm{v} /_{\text {max }} \mathrm{cm}^{-1} 3417(\mathrm{NH})$, $1744(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\delta, \mathrm{ppm}\right.$, DMSO-d ${ }_{6}$): 3.46 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}-$ pyridazine), 5.80 (s, 1H, CH-pyrazole), 7.31-7.88 (m, 20H, ArHs), 8.66 (s, 1H, NH), 12.23 (s, 1H, NH). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}(456.54): \mathrm{C}, 78.92 ; \mathrm{H}, 5.30 ; \mathrm{N}, 12.27 \%$. Found: C, 79.10 ; H, 4.90 ; N, 12.53%. ${ }^{13} \mathrm{C} \mathrm{nmr}$ (δ, ppm, DMSO-d ${ }_{6}$): 47.81, 70.54, $95.62,114.83,115.18,116.31,122.12,125.07,126.81$, 126.93, 127.09, 127.34, 127.65, 128.07, 128.26, 128.50, 128.72, 128.86, 129.26, 129.56, 129.88, 131.97, 132.69, 133.77, 135.85, 136.97, 137.65, 142.41, 148.52, 177.88.

REFERENCES

[1] Lim, S-G; Kwon, B-I; Choi, M-G; Jun; C-H, Synlett, 2005, 1113.
[2] Zaleso V. V.; Rubtsov A. E. Chemistry of Heterocyclic compounds, 2004, 40, 133.
[3] Egorova, A.Y.; Sedavkina, V.A, Chemistry of Heterocyclic compounds, 2002, 38, 1319.
[4] Pour, M.; Spulak, M.; Balsanek, V.; Kunes, J.; Buchta, V.; Waisser, K. Bioorg. Med Chem Lett., 2000, 10, 1893.
[5] Rossi, R.; Bellina, F.; Bechini, C.; Mannina, L; Vergamini, P. Tetrahedron, 1998, 54, 135.
[6] Andraud, J.; Andraud, G.; Berthelay, J. C. C. R. Soc. Biol., 1970, 164, 2711.
[7] Yonetoku, Y.; Kubota, H.; Okamoto, Y.; Ishikawa, J.; Takeuchi, M.; Ohta, M.; Tsukamoto, S. Bioorg Med Chem 2006, 14, 5370.
[8] Chen, J. Z.; Han, Z. W.; Liu, Q.; Makriyannis, A.; Wang, J.; Xie, X. Q. J. Med. Chem. 2006, 49, 625.
[9] Takezawa, R. T.; Cheng, H.; Beck, A.; Ishikawa, J.; Launay, P.; Kubota, H.; Kinet, J. P; Fleig, A.; Yamada T.; Penner, R. Mol. Pharmacol. 2006, 69, 1413.
[10] Shaaban, M. R., Saleh, T. S.; Osman, F. H.; Farag, A. M. J. Heterocyclic Chem., 2007, 44, 177.
[11] Dawood, K. M.; Farag, A. M.; Abdel-Aziz, H. A. J. Chin. Chem. Soc., 2006, 53, 873.
[12] Dawood, K. M.; Farag, A. M.; Abdel-Aziz, H. A. Heteroatom Chem., 2005, 17, 621.
[13] Dawood, K. M.; Farag, A. M.; Abdel-Aziz, H.A. J. Chem. Res., (S), 2005, 378.
[14] Elkholy, Y. M. Heterocycl. Commun. 2005, 11, 89.
[15] Farag, A. M.; Dawood, K. M.; Elmenoufy, H. A. Heteroatom Chem., 2004, 15, 508.
[16] Farag, A. M.; Dawood, K. M.; Abdel-Aziz, H. A. J. Chem. Res., 2004, 808.
[17] Elkholy, Y. M. Phosph. Sulfur and Silicon, 2002, 177,115.
[18] Farag, A. M.; Dawood, K. M.; Kandeel, Z. E. Tetrahydron,

1997, 53, 161.
[19] Dawood, K. M.; Ragab, E. A.; Farag, A. M. J. Chem. Res., (S), 685 (M), 2003, 1151.
[20] Dawood, K. M.; Raslan, M. A.; Farag, A. M. Synth. Coттии., 2003, 33, 4095.
[21] Shawali, A. S.; Farag, A. M.; Algharib, M. S.; Albar, H. A. J. Chem. Res., (S), 1993, 80.
[22] Shanmugasundaram, M.; Raghunathan, R.; Padama, M. E. J. Heteroatom Chem.1998, 9, 517.
[23] Puviarsan, K.; Govindasamy, L.; Velmurugan D.; Shanumuga, M.; Raghunathan, R. Acta Cryst. 1998, C54, 959.
[24] Walkof, P., Can. J. Chem. 1975, 53, 13331.
[25] Hegarty, A. F.; Cashoman, M. P.; Scoti F. L., Chem. Coттии., 1971, 13, 884.
[26] Shawali, A. S.; Abdelhamid, A. O. Tetrahedron, 1971, 27, 2517.
[27] Allinger, N. L., J. Am. Chem. Soc., 1977, 99, 8127.
[28] Thomas, H. D.; Chen, K.; Allinger, N. L., J. Am. Chem. Soc., 1994, 116, 58879.
[29] Allinger, N. L.; Zhou, X.; Bergsma, J., "Molecular Mechanics Calculations (MM2) on Nitriles", J. Mol. Struct. (Theochem.), 1994, 312, 69.

